If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72=6s^2-2s
We move all terms to the left:
72-(6s^2-2s)=0
We get rid of parentheses
-6s^2+2s+72=0
a = -6; b = 2; c = +72;
Δ = b2-4ac
Δ = 22-4·(-6)·72
Δ = 1732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1732}=\sqrt{4*433}=\sqrt{4}*\sqrt{433}=2\sqrt{433}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{433}}{2*-6}=\frac{-2-2\sqrt{433}}{-12} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{433}}{2*-6}=\frac{-2+2\sqrt{433}}{-12} $
| 3a^2+15a-18=3 | | 4x=6x-12-14+4 | | -8=1x=-1x+4x | | 2/3x+1/4=-1/2 | | F(z)=1/z | | 3(a-8)=36-7a | | 0=50x^2-70 | | 4x+14=6x-12+4 | | (-4)+v=0 | | 6(2x+10)=120 | | 77x-5+10=7x+5 | | 3/2 =z/15 | | (10^x+2)=1000 | | 6.6(x+2)+4.6(3-x)=12 | | -20=6y-2 | | 12+5a-2a=3a+12 | | 75-x+4x=180 | | -15-5=3n+41 | | 10^(x+2)=1000 | | 0.20=(0.1/x) | | 75-x=4x | | 2x^2+8x-23=0 | | x^2+3x+15=40 | | 6/3x=1/3+5 | | (3^x)(5^2x)=150 | | 6(2,070+w)=12,870 | | 4x=13=5 | | 2.50h*3=13 | | -4=-2(j+6)+ | | 5(2x+3)=8(x-1)+7 | | 3y-3=4y+4 | | 4(2+2x)=16 |